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1. Introduction

In the past 25 years we have learned much about the semantic nature of
DPs (formerly NPs) by directly interpreting them as generalized quantifiers.
See Keenan (1996) and Keenan and Westerstahl (1997) for overviews of
this work. For example, we can provide rigorous and empirically reasonable
(not perfect) answers to questions that arise independently in generative
grammar, such as: (1) The subject DPs which license negative polarity items
in the predicate are those that denote monotone decreasing functions. (2)
The DPs which occur naturally in the post of position in plural partitives,
as in two of those students, are those that denote principal filters. (3) The
DPs which occur context neutrally in Existential There Ss are (boolean
compounds of) those built from intersective Determiners (Dets).

This work has also led to new semantic generalizations, unsuspected and,
with one or two exceptions, unformulable without direct interpretation: (1)
Lexical (syntactically simple) DPs denote monotone functions, almost al-
ways monotone increasing; (2) DPs built from lexical Dets almost always
denote monotone functions, usually monotone increasing; (3) DPs built
from proportionality Dets (most, two out of three, every third) are not in
general definable in first order logic, nor are they sortally reducible (Most
poets daydream has no paraphrase of the form most individuals, followed
by a boolean compound of poet(z) and daydream(z)). (4) Overwhelm-
ingly natural language (NL) Dets denote conservative, domain independent
functions.

Our goal in this paper is to provide a comparable direct interpretation of
anaphors, such as himself in (1b).

(1) a. Not a single patient criticized every doctor
b. Not a single patient criticized himself

c. Not a single patient criticized his doctor
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2 EDWARD L. KEENAN

In (1a) the interpretation of the object DP every doctor is referentially
independent of the interpretation of the subject DP not a single patient.
The P1 (one place predicate) criticized every doctor is interpreted as the
set of objects which bear the CRITICIZE relation to every doctor. That P1
denotation does not change when we replace the subject DP with others —
John, most of the patients, etc. What we predicate of John in John criticized
every doctor is exactly what we predicate of Bill in Bill criticized every
doctor.

But not so in (1b). The person understood to be criticized in John criti-
cized himself is not the same as the one understood to be criticized in Bill
criticized himself. What we predicate of John in John criticized himself is, in
effect, the property expressed independently by criticized John. Obviously,
this is not what we predicate of Bill in Bill criticized himself. So there is
an interpretative dependency of the predicate on the subject denotation. In
fact since criticized is denotationally constant just himself is interpretatively
dependent. It is this dependency we characterize below.

Ss like (1c) are ambiguous according as his (doctor) is interpreted as
referentially dependent on the subject DP or not. It might be interpreted
as dependent, like himself in (1b), but cqually it might refer to a fixed
individual, say John’s doctor, in a context in which we have been discussing
John. So his doctor is may be referentially dependent but is not obligatorily
80.

Below we propose that anaphorically interpreted expressions are ones
which denote functions of a certain sort, a sort that subsumes the generalized
quantifiers (GQs) denoted by referentially independent DPs such as John,
no student, most of John’s students, etc. Direct interpretation deepens our
understanding of NL anaphors, leading us to notice new properties they
have as well as contributing to solutions to old problems, such as where
their antecedents may lie. Here are four specific merits of this approach, not
all of which we can enter in detail here.

[1] A definition of anaphor in terms of denotations is syntax independent
and hence applicable cross linguistically. It enables us to formulate tests to
decide if ang sarili in Tagalog, kendisi in Turkish, cagi-casin-ul in Korean are
anaphors. And this puts us on methodologically surer ground in evaluating
language general hypotheses concerning anaphors, such as:

— Do all languages present lexical anaphors? — Surely not: Old English
(Keenan 2003), Tongan (Dukes 1996).

~ Do languages present lexical anaphoric Dets (lexical expressions which
combine with Ns to form anaphoric DPs)? — Likely so, Norwegian sin,
Latin suus, and Russian svo:.

—  Are lexical anaphors syntactically invariant (Keenan and Stabler 2003)?
— Likely so: In any given grammar lexical anaphors have syntactically
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ON THE DENOTATIONS OF ANAPHORS 3

distinctive properties so that systematic interchange with non-anaphors
may fail to preserve grammaticality.

— Is the anaphor-antecedent relation asymmetric (meaning we cannot
interchange anaphor and antecedent preserving meaning and grammat-
icality)? — Likely so (Keenan 1993).

— Are anaphors always (asymmetrically) c-commanded by their antecedents?
— Arguably not, as in case marking languages like Korean and voice
marking languages like Batak and Tagalog (Keenan and Stabler 2003).
(These last two queries require a language independent definition of
antecedent of).

[2] We provide a semantic basis for expecting (if not predicting) that
anaphors will combine syntactically with referentially independent DPs to
form complex anaphors:

(2) a. Each pupil criticized both himself and the teacher (Boolean com-
pounds)

b. One worker criticized everyone but himself/no one but himself
(Exception Phrases)

c. Zakanya ta kula de kwikwiyo-n kanta

Lioness she watch of cub-of herself
‘The lioness watched over her own cub’ (Possessors; Hausa, Brenda
Clark, pc)

Languages with DP anaphors often permit them in possessor position
— Hindi, Japanese, Georgian, Chinese, Hebrew, Korean, Uzbek, Hausa —
though English does not: * John loves himself’s mother. Keenan (2003) offers
an historical account of this latter fact.

[3] We provide a semantic basis for predicting that if expressions which
are interpreted anaphorically as objects (of verbs) are either ungrammatical
as subjects of lexical P1s or they are not interpreted as anaphors there. Most
commonly they are interpreted deictically. Thus at least part of standard
Binding Theory is semantically motivated (see Biiring 2005 for a recent
overview). The standard English * Himself laughed is covered by this claim,
as is Japanese zibun in (3). (Keenan 1988; N. Akatsuka, pc):

(3) a. Hanako-ga <zibun-o utagatie-iru
Hanako-NOM zibun-ACC doubts
‘Hanako doubts herself’ or ‘Hanako doubts Speaker’

b. Zibun-ga Hanako-o utagatta-iru
zibun-nom Hanako-acc doubts-ASP
Speaker doubts Hanako, *Hanako doubts herself.

[4] We show that anaphoric DPs impose strictly weaker conditions on
their possible denotations than referentially independent DPs, with the
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result that they allow massively more possible denotations. Then a general-
ization in Keenan (1987) supports that lexical anaphors (himself, kanta, etc.)
exhibit little or no variability in denotation whereas lexical non-anaphoric
DPs (John, Mary, etc.) can denote basically denote any object in the domain
of a model.

2. DP denotations

We consider first the denotations of referentially independent DPs, such
as John, every student, most students, not more than half the students,
more students than teachers, ... They are usually assigned type ((e,?),t)
and relative to a domain FE of entities (always assumed here to have at
least two elements to avoid degenerate cases) are interpreted as elements of
[P(E) — {0,1}], the set GQE of generalized quantifiers over E. Here P(E)
is the power set of E, {0, 1} the (boolean) set of truth values with 0 = False
and 1 = True. In general [X — Y] is the set of functions with domain X
and codomain Y. Here is a sample GQ (generalized quantifier): for every
subset A of E, EVERY(A) is that GQ which maps each subset B of £ to 1
iff A C B, that is, iff each A is a B. Similarly, writing | X | for the cardinality
of the set X,

(4) SOME(A)(B) =1if ANB # 0
NO(A)(B)=1if ANB ={
MOST(A)(B) =1iff 2-|AN B| > |A|
(THE TEN)(A)(B) =1 iff |A| = 10 and A C B
(MOST OF THE TEN)(A)(B) = 1iff |A| = 10 and MOST(A)(B) =
1

So here DPs semantically map P1 denotations (subsets of E, here called
properties or unary relations) to truth values (PO = Sentence denotations).
But clearly this is insufficiently general, as DPs combine with P2s (two place
predicates) to form Pls, such as criticize every doctor, and more generally
with Pn+1’s to form Pn’s. So they should in general map Pn--1 denotations,
n+1-ary relations, to Pn denotations, n-ary relations. This is in fact how DP
denotations are given in Keenan and Westerstahl (1997). Here we consider
just binary relations.

Civen a referentially independent DP such as every poet we know how
to compute the set denoted by the P1 which results from combining it as
an object with a P2, such as admire. Admire every poet denotes the set of
objects x which bear the ADMIRE relation to every poet. That is, the set
of objects z which the GQ denoted by every poet is true of

Definition 1
For R a binary relation over E and a € E, write aR for {b | (a,b) € R}.
Then, for each generalized quantifier F', set F(R) =4 {a | F(aR) = 1}
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Note that the value F' assigns to the binary relation R is uniquely de-
termined by the value that it assigns to the unary relations (which aR is).
So to define such a function it suffices, as before, to give its value on the
unary relations. In this way we treat ordinary DPs as denoting functions,
still called generalized quantifiers, mapping unary relations to zero-ary ones
(truth values), and binary relations to unary ones, satisfying the condition
in the definition above. It is then obvious that generalized quantifiers satisfy
the Eztensions Condition (EC):

Extensions Condition (EC):
For F a GQ, R and S binary relations, and a,b € E, if aR = bS then
a € F(R)iff b e F(S)!

To check that a DP X satisfies the EC, check that:

(5)  If the individuals John criticized are exactly those that Bill praised
then John criticized X and Bill praised X have the same truth value.

For example to check that most of Peter’s cousins (built from a Det
that is not even first order definable) denotes a GQ, imagine a situation in
which John criticized exactly the people that Bill praised. Then clearly John
criticized most of Peter’s cousins and Bill praised most of Peter’s cousins
have the same truth value — both true or both false. Thus most of Peter’s
cousins is a GQ denoting DP. So it can be interpreted as the sole argument
of a lexical P1.

The test in (5) is one that can be effected under normal elicitation
procedures. (Of course with naive speakers we cannot elicit metalinguistic
judgments like “Do A and B have the same truth value?”. But we can check
that A entails B by asking things like: Look, suppose A. Then B, right? If
your speaker agrees you can infer that A entails B. Then similarly check
that B entails A and then infer that A and B are always true together).

The test in (5) also helps us realize how strong the EC is. It says that when
X denotes a GQ the truth value of John criticized X remains unchanged
if we replace John with any other individual denoting DP and criticized
with any other transitive verb provided the new individual bears the new
binary relation to the same things that John bears CRITICIZE to. Below

! And any F from binary to unary rclations satisfying the EC uniquely determines a
GQ F' by setting F'(K) =1 iff ¢ € F({a} x K). Further, extending the EC to n + l-ary
relations is little more than a matter of notation. Let a = (a1, ..., an) be an n-tuple of
clements of E, and for R an n + l-ary relation write aR for {b | (a,b) € R}. Note that
(a,b) here is (a1, ..., @n,b). Then we take GQr to be the set of functions F' with domain
the union of the n -+ l-ary relations over E, codomain the union of the n-ary relations over
E, and which satisfy the EC: for each n + l-ary relation R, F'(R) is the set of n-tuples a
such that F(aR) = 1. In this way the value of a GQ F at any relation is determined by
its valucs at the unary rclations (the subsets of E).
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6 EDWARD L. KEENAN

we exhibit some DPs whose denotations fail the EC. Among them lie the
anaphoric functions.

Anaphor denotations DPs such as himself fail the EC, as they fail the
test in (5). Suppose that John criticized just Sam, Bill, Rob, Sue and Maud,
and that these are exactly the people Bill praised. Then the sentence John
criticized himself is false, but Bill praised himself is true. So himself fails
(5) and thus cannot denote a generalized quantifier. But the denotation of
himself shares with GQs the property of mapping binary relations to unary
ones. The P1 criticized himself denotes the set of objects = which stand
in the CRITICIZE relation to themselves. We can interpret himself as the
function SELF from binary relations to unary ones given in (6):

(6) SELF(R)={a| (a,a) € R}

Then Every poet admires himself would be compositionally represented
as in (7), which is true iff each individual poet stands in the ADMIRE
relation to himself, which is correct.

(7)  Every poet admires himself
EVERY POET ADMIRE SELF
EVERY(POET) SELF(ADMIRE)
EVERY(POET)(SELF(ADMIRE))
= True iff POETC {a | (a,a) € ADMIRE}

This interpretation of himself is sufficient to support onc interesting claim
concerning the logical expressive power of English:

(8)  There is no generalized quantifier F such that F(R) = SELF(R), all
binary relations R over E

Proof Let a # b € E. (E has at least two elements recall.) Set R =
{{a,a)} and S = {(b,a)}. Then aR = bS = {a}. So for F' any GQ, either
a€ F(R)and b€ F(S) or a ¢ F(R) and b ¢ F(S). But a € SELF(R) and
b¢ SELF(S), so SELF # F, and since F was arbitrary, SELF isn’t a GQ.
.

Comparable claims hold for more complex anaphors, such as only himelf,
every/no poet but himsclf, as defined below:

(9) a. a€ (ONLY HIMSELF)(R) iff aR = {a}
b. a€ (EVERY POET BUT HIMSELF)(R) iff POET — aR = {a}

¢. ae (NOPOET BUT HIMSELF)(R) it POETN aR = {a}

By (9a) John criticized only himself iff the set of people John criticized
is {John}. John criticized every poet but himself is true iff he is the only
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ON THE DENOTATIONS OF ANAPHORS 7

poet who he didn’t criticize. He criticized no poet but himself iff he’s the
only poet he did criticize.

The somewhat surprising semantic generalization in (8) tells us that
even in a language with the full class of expressible generalized quantifiers
(Keenan and Stavi 1986) (such as most of John’s cousins, not more students
than teachers, etc.) the addition of himself strictly increases expressive
power. It cannot be paraphrased by any GQ denoting DP.

But, in satisfaction of [2], object anaphor denotations such as SELF or
those in (9) share with such DPs the semantic property of mapping binary
to unary relations, so we can interpret boolean compounds of them and
referentially independent DPs in object position just using the mechanisms
already needed for non-anaphoric DPs. The same mechanisms that guaran-
tee the logical equivalence of (9a,b,c) work for (10a,b,c) as well since the
arguments of AND (OR, NOT) are just functions from binary to unary
relations.

(10) Sam criticized every teacher and some student

a.
b. Sam criticized every teacher and criticized some student

¢.  Sam criticized every teacher and Sam criticized some student

(11) a. Sam criticized himself and some student
b. Sam criticized himself and criticized some student

¢.  Sam criticized himself and Sam criticized some student

Let us return to the deeper question of just what the denotations of
anaphors depend on. Per the EC, if we know that the set K of individuals
John criticized is the same as the set that Bill praised we can infer that John
criticized every doctor and Bill praised every doctor have the same truth
value. But we cannot under these conditions infer that John criticized him-
self and Bill praised himself have the same truth value. This case requires
that we know something about the composition of K, specifically whether
it contains just one of John and Bill or else both or neither. So varying
the subject holding the VP constant may change truth value. But truth
value is preserved under mere change of transitive verb. If John praised just
the people he (John) admires then John praised himself and John admires
himself must have the same truth value. Thus anaphors are functions from
binary to unary relations that satisfy the Anaphor Condition:

Anaphor Condition (AC):
For an F mapping binary to unary relations and a € E, if aR = aS
then a € F(R) iff a € F(S)

To check that a DP X satisfies the AC check the following:
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8 EDWARD L. KEENAN

(12) If the individuals Bob praised are exactly those Bob admires then
Bob praised X and Bob admires X have the same truth value.

Again, {12) is testable in elicitation and thus together with (5) it enables
us to check whether an occurrence of an expression in a transitive S is
anaphoric or not, in support of the claim in [1].

The denotations of object occurrences of himself, only himself, everyone
but himself, both himself and the two students satisfy the AC: if John praised
just the people he admires then he praised (only) himself iff he admires (only)
himself, he praised everyone but himself iff he admires everyone but himself,
etc. So the distinctive property of an object anaphor is that it is interpreted
as a function satsfying the AC but failing the EC. More explicitly:

Definition 2
For each domain E,
1. A function from binary relations to unary relations over E is anaphoric
iff it satisfies the AC and fails the EC.
2. An interpretation of a DP occurrence is anaphoric iff that interpre-
tation is anaphoric as defined in 1, above
3. An occurrence of a DP is an essential anaphor iff it has non-trivial
interpretations and all of them are anaphoric {as defined in 1,
above).

A “trivial” interpretation of an object DP is one which denotes either 0
or 1, where 0 maps all binary R to (), the empty set, and 1 maps them all
to E, the domain of the model. Both 0 and 1 satisfy the EC. For example
an object occurrence of fewer than zero boys always denotes 0. Hence no
occurrences of it are anaphoric or essential anaphors.

In support of the insightfulness of Def 2, the reader may verify that
object occurrences of himsell and the DPs whose denotations are in (9)
are essential anaphors. But Def 2 relativizes the notion of an anaphor to
occurrences and this forces us to restate, and refine, the queries in [1], which
makes them more accurate but also more cumbersome. For example we
might refine “Do all languages present lexical anaphors?” to a weak and a
strong version. The former is “Do all Ls have lexical items with anaphorically
interpreted occurrences?” Here Yes a likely answer. The stronger version
would be “Do all Ls have lexical items with occurrences which are essential
anaphors?” And even here we really want more. We do not really want to
claim that English has essential anaphors merely on the grounds that his
mind must be interpreted anaphorically in John lost his mind. What we are
generally interested in are grammatically defined occurrences, as when
we said above that object occurrences of himself are essential anaphors.
By “object” here we mean a grammatical object of a P2 (or a Pn, n > 2).
Sce Keenan and Stabler (2003) for a grammar independent definition of
grammatically definable.
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To justify why we relativize the notion of anaphor to occurrences recon-
sider the Japanese (3a) where zibun occurs as a subject, -g¢ marked, and is
interpreted deictically as Speaker. So that occurrence is not anaphoric and
not an essential anaphor. So we cannot say simply that zibun in Japanese
is an anaphor, but at most only that certain occurrences are. Surprisingly
perhaps somewhat comparable cases occur in English. Keenan (1988) (citing
J. McCloskey pc) notes that Irish English presents Ss like (13a,b):

(13) a. Watch it, himself is in a bad mood today (said to co-worker
arriving late)

b. Ed, hurry up.
Wait a minute. Herself is getting herself ready.

In (13a) himself occurs as a subject and refers deictically, to the promi-
nent male in context (the boss). In (13b) the first occurrence of herself
refers to the prominent woman in context, say Ed’s wife, and the second
occurrence is most naturally understood anaphorically. So we cannot just
say in this dialect (one shared by some communities in New England) that
himself [ herself are anaphors. Whether they are anaphorically interpreted
depends on the occurrence. Less obvious examples occur in standard English.
Here are two. First, compare:

(14) a. That cyclist collapsed

b. Several friends of a certain cyclist and his son testified against
that cyclist at the hearing

In (14a) the demonstrative DP that cyclist is interpreted deictically,
as some cyclist in the context of utterance. But in (14b) that cyclist is
interpretable anaphorically, bound by a certain cyclist inside the subject
DP. In distinction to standard English himself but like Japanese zibun and
Irish English himself, that cyclist may also occur as a subject interpreted
deictically. So some occurrences of that+N are anaphoric and some aren’t.
And since that cyclist could be interpreted deictically in (14b) its occurrence
there is not an essential anaphor.

A second, subtler, case was pointed out to me by Jason Mattausch (pc).
Compare:

(15) a.  Neighboring countries should maintain clear boundaries (between
them)

b. Most dictatorships fear attacks from neighboring countries

In (15b) the occurrence of neighboring countries has a natural anaphoric
interpretation meaning “countries which neighbor them”, with them bound
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10 EDWARD L. KEENAN

by Most dictatorships. But as a subject in (15a) it is neither interpreted
anaphorically nor deictically, but rather as “countries which neighbor each
other”. This interpretation is also available, if less so, in (15b). So again we
have a DP some of whose occurrences can be interpreted anaphorically but
none which must be, so no occurrences it seems are essential anaphors. A
last example, with an overt reciprocal, is (16).

(16) a. Men who dislike each other are running for President

b. Rosa and Zelda date men who dislike each other

The object occurrence of men who dislike each other in (16b) has an
anaphoric interpretation, on which (16b) means “Rosa dates a man who
dislikes some man who Zelda dates, and vice versa”. In (16b) we can also
interpret the object DP as it is interpreted in (16a), in which case it implies
that Rosa dates men who dislike each other and so does Zelda, so its object
occurrence in (16b) has anaphoric interpretations but is not an essential
anaphor.

In this way then we characterize anaphors in terms of their denotations.
We have to be sure our characterization is limited to arguments of P2s but
we take this context as the most basic one for anaphors. If a language has
any anaphors in any context it has them in this one. Thus we feel that we
have provided a way of detecting anaphors in an arbitrary language. And
since such anaphoric occurrences constrain the relative interpretations of
two arguments of a predicate we have a semantic basis for expecting [3]
that such expressions either will not occur as intransitive subjects or will
be interpreted non-anaphorically there (since an intransitive verb does not
have two arguments which can be constrained as anaphors require). Let us
end with some reflections logical expressive power, [4].

3. Logical Expressive Power of DP Anaphors

We have already noted that adding DPs denoting anaphors to a language
allows us to denote more maps from binary relations to unary ones that
can be done with “mere” generalized quantifier denoting DPs. We naturally
wonder whether all maps from binary relations to unary ones can be denoted
by functions satisfying AC (including ordinary GQs). The answer is negative.
One systematic counter example is (17).

(17)  John knows more students than Bill (does)
Here the P1 knows more students than Bill does denotes the set of objects

z such that the number of students that # knows is greater than the number
Bill knows. But (18a) does not imply (18b):
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(18) a. The indviduals John admires and the individuals John knows are
the same

b.  John admires more poets than Bill does iff John knows more poets
than Bill does

(18a) makes no claim whatever concerning the number of poets Bill ad-
mires or knows, those figures can be any we like. So imagine a situation in
which John knows just 10 people, all of whom are poets he admires. But
Bill knows 20 poets and admires just five of them. In such a situation (18a)
is true and (18b) false, as the two Ss on either side of the iff have different
truth values. Thus the function Fj, mapping binary relations R to properties
in (19) does not satisfy AC:

(19) TForallbe E, Fy(R) = {a | aRN POET| > |bRN POET}

So we know that anaphors — SELF, etc. — satisfy the AC and func-
tions like F} above fail the AC. So adding anaphors to a language with
GQs increases expressive power but not unlimitedly — not just anything
(of relevance) can be said using anaphoric functions. Below we measure
just what the increase in expressive power is. Our interest in that claim
is twofold. First, even over small domains the set of anaphoric functions
is vastly greater than the number of gencralized quantificrs (that is, the
functions which satisfy the AC and fail the EC vastly outnumber those
which satisfy the EC). And second, our way of counting the strict anaphors
suggests an alternate way of representing them, one which approaches that
used in Jacobson (1999).

Our new representation is inspired by our remark at the beginning of this
paper that the property understood to hold of the subject in John criticized
himself is the one expressed by criticized John, whereas in Bill criticized
himself it is criticized Bill. So once an entity b is given as an argument of
the P1 we interpret himself as the GQ determined by that entity (Def 3
below). For example in John criticized everyone but himself we interpret the
object as everyone but John, in John criticized both himself and the teacher
we interpret the object as both John and the teacher, etc. In this way we
represent anaphor denotations as functions mapping entities to GQs. To see
how this works in practice, we first define the GQs which correspond to
entities in I:

Definition 3
For all b € E, I, the individual generated by b, is that GQ given by:
L(A)=1iffbe A
We remind the reader that classically we treat John as denoting an ele-

ment b € E and stipulate that John smiled (ignoring tense and aspect) is
true iff b € SMILE, the set denoted by smile. Now we interpret John smiled
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12 EDWARD L. KEENAN

as the truth value that I, maps SMILE to, and that is 1 iff b € SMILE, as
before. Consider also how the individuals I, extend to binary relations:

(20) Ip(R)={a|lb(aR) = 1} = {a | b € aR} = {a | (a,b) € R}

So criticize John denotes the set of objects a such that (a, John) is in
the CRITICIZE relation. We now could define anaphors as the functions f*
below:

Definition 4
For f € [E — [P(E) — {0,1}]] define f* from binary to unary relations
by
f(R)={a| f(a)(aR) =1}
Now consider that we can think of himself as denoting self*, where self
maps each b to I,. Then the compositional interpretation of John criticized
himself yields the correct results:

(21) John criticize himself
I; CR self”
I; self*(CR)

I;(self*(CR))
=1iff j € self*(CR) Def 3
iff self(j)(jCR) =1  Def f*
iff I;(jCR) =1 Def self
iff j € {a](a,j) € CR} Def3
iff (4,7) € CR Set Theory O

Similarly we obtain correct results letting only self be that function
mapping each b to only([), every student but self maps each b to every
student but I, etc.

There is more to be said about a systematic notation here, but let us
rather measure our increase in expressive power. We are representing anaphoric
functions as the f*, for each function f from E into GQg. We observe first
that each such f* satisfies the AC:

(22) Let aR = aS. We must show that a € f*(R) iff a € f*(S). Now

a € f*(R)iff f(a)(aR) =1 Def of f*
iff f{a)(aS) =1 Assumption aR = aS
iff a € f*(S) Def f* O

And (23) below computes the number of such f*, which is easy since the
map sending each f to f* is one to onel, so

' Proof let f # g € [E — [P(E) — 0,1]]. Let f(b)(K) # g(b)(K). Then, sctting
R = {b} x K, we have that b € f*(R) iff f(b)(bR) = 1, f f(b)(K) = 1. Similarly
be g*'(R) iff g(b)(K) = 1, so by thc assumption f*(R) # ¢"(R). O
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ON THE DENOTATIONS OF ANAPHORS 13

(23) WS | felE— [P(E)— {0,1}]]}| = [[E — [P(E) — {0,1}]]] = 2™,
for m = |E| - 2/ZI

Now (22) shows that each f* satisfies the AC, so the number of AC
functions is at least 2™ as above. In fact it is exactly 2™ since

(24) Theorem Each F satisfying AC is an f* for some f 1
Thus the set of f* is exactly the set of maps from binary to unary relations

satisfying AC. It is worth noting how fast the number of possible anaphor
extensions outstrips those of referentially independent DPs (the GQs).

(25) |E| =n, |GQ| _2’c =2 |AC| = 2™, m=n-2" |AC — GQ|
24 =16 =2.922 2m =928 =256 240
3 =256 m=3-2% 2m=2"—16 777,216 16,776, 960

So even in a minuscule world of just three individuals there are just 256
possible extensions for referentially independent DPs but almost 17 million
ones for anaphors! This may seem crazy, but that number is itself minuscule
compared to 812, the total number of maps from binary to unary relations
over an F with 3 elements.

Keenan (1987) observes that lexical items in a category whose denotation
set is relatively “small” (in terms of the size of the domain E) exhibit much
freedom with regard to which elements in that set they may denote. For
example there seem to be no general logical restrictions on the subsets of
E that can be denoted by common nouns or Pls. But such restrictions do
emerge as we move to categories whose denotation sets grow as a hyperex-
ponential function of n. (‘hyperexponential’ here just means that the size of
the set is > 25, where k itself is exponential in n, minimally 2™). For the
record, writing Deng(C) for the set in which expressions of category C find
their extensions in a situation with domain F,

Lexical Freedom Law
As |Deng(C)| increases lexical denotational freedom decreases

! Proof Let F satisfy AC and define fr from E — [P(E) — {0,1}] by setting
fria)(K)=1iff a € F({a} x K)
We show that fr* = F. Let R be arbitrary. Then

a€ fi(R)iff ain fr(a)(R) Def *, (17)
iff fr(a)(aR)=1 per line (3) in (21)
iff a € F({a} x aR) Def fr
iff a € F(R) For S = {a} x aR, aS = aR; F'is AC

Thus F is f}, completing the proof. O
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14 EDWARD L. KEENAN

For example the denotation set for the referential DPs is [P(E) — {0, 1}]
which is hyperexponential in n, having size 2, for k = 2. But the lexical
DP denotations largely lie in the set of individuals, the Ip’s, a set of size n
in a one to one correspondence with E. Similarly common noun modifiers
(adjectives), of type ((e,t), (e,t)), lie in [P(E) — P(E)], which has size 2"
raised to the power 2. But extensional adjectives are not interpreted freely
in this set, they must denote restricting functions: F(A) C A, all subsets A
of E. And all but a few extensional adjectives meet a stronger condition:
they are intersective: F(A) = ANF(E). And the set of intersective functions
has cardinality 2", the same as |P(E)|, and so is not hyperexponential in n.
The denotation set for Dets, of type ((e,t), (e,t,t)), has cardinality 2¥ for
k = 4™. Conservativity reduces this to 2% for k = 3", still hyperexponential
in n. But most lexical Dets are either logical constants — every, some, no,
most, etc. and so have no freedom of denotation, or they are deictic — my,
your, this, etc. so their denotations are uniquely determined by context of
utterance.

The Lexical Freedom Law is not an accident. Complex expressions have
their denotations determined compositionally, but lexical items have to be
learned by brute force. So the larger the set in which they can denote the
harder it is to know which of the possible denotations is theirs. So the
constraints on lexical freedom serve a useful learning theoretic function, one
that applies to our remarks about anaphors. The set of maps satisfying AC
is hyperexponential in n, and the lexical anaphors, like most lexical Dets,
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are logical constants denoting specific invariant elements in their denotation
set: SELF is provably invariant.!

4. Conclusion

We have illustrated what it is like to interpret object anaphors directly,
rather than “translate them away” with variable binding operators. This
has enabled us to gain some insight into the way they increase logical ex-
pressive power. But our remarks here are far short of a complete theory
of DP anaphora. For that we would have to treat anaphors in a greater
diversity of syntactic positions, such as those in (26) and (27) below.

(26) a. Martha protected Billy from himself
b. Martha protected Billy from herself

¢.  Sam protected Billy from himself (antecedent ambiguous)

(27) a.  Each student thought that no one but himself would get an A on
the exam

b. Each student tackled a problem that only himself and the teacher
could solve

¢.  No one likes to work with anyone smarter than himself (antecedent
ambiguous)

! Invariant elements of a denotation set are those fixed (mapped to themselves) by all
the automorphisms of the primitives E and {0,1} of a model. Such an automorphism
h is the identity function restricted to {0,1} and any permutation of E. h extends to
all denotation sets in a canonical way (sce Keenan and Westerstahl 1997). For example
its valuc at a subset A of E is {h(a) | a € A}. It’s value at a binary relation R over
E is {(h(z),h(y)) | (z,y) € R}, etc. Provably then the only invariant elements of P(E)
arc E and ; the only invariant binary relations are §, £ x E, id, and —id. Now let h
be a permutation of E. By the way h extends to elements of the type hierarchy built
from E and {0,1} we have that A(SELF) is that map sending each h(R) to that map
sending cach h(a) to R(SELF(R)(a)). To show that SELF is invariant we must show that
h(SELF) = SELF. Let R and a be arbitrary. Then

R(SELF)(hR)(ha) = h(SELF(R)h(a)) Def extension of h
= k(SELF(R)(a)) Def extension of h
= SELF(R)(a) h is the identity on truth valucs
=1iff (a,a) €R Def SELF
= 1iff h(a,a) € hR Def extension of h
= 1iff (ha, ha) € h(R) Def extension of k

= 1iff SELF(hR)(ha) = 1 Def SELF

Thus h(SELF) and SELF take the same values at h(R), and since cvery binary relation
S is an h(R) for some R, namely R = h™(S), the proof is complete. O
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16 EDWARD L. KEENAN

Our “*” notation would have to be extended systematically and compared
with more standard variable binding.! And the notion antecedent of an
anaphor would have to be defined in denotational terms in order to respond
to some of the queries in [1]. So, hardly surprising, much remains to be done
from this perspective.
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binding mechanisms in an operation (z-lifting) on predicates. We build it into the meaning
of his.

Keenan.tex; 7/07/2006; 19:53; p.16



